
SI Appendix

Much theoretical work has been devoted to quantifying
the conditions under which microscopic fluctuations have
macroscopic effects [1]. The most useful results are of-
ten restricted to systems with a single degree of freedom
or employ sophisticated tools such as Itô’s calculus. In
what follows, we aim to develop a convenient and simple
scheme to assess the stability properties of a dynami-
cal system subject to molecular noise described by the
chemical Master equation. The method is an extension
of the familiar linear stability analysis of nonlinear dy-
namical systems, although here the effective eigenvalues
about the equilibrium points are adjusted to reflect the
influence of the noise.

I. MATHEMATICAL METHODS

A very useful qualitative picture of the behavior of a
system of nonlinear differential equations emerges from
the linearized dynamics about the fixed-point(s) (also
called the steady-state(s)) of the system, defined as the
reactant concentrations at which the synthesis and degra-
dation rates balance. The stability of the system near the
fixed-points can be estimated by calculating the eigenval-
ues {λi} of the resulting linearization, which are gener-
ally a set of complex numbers. If the real parts are all
negative, we say the system is locally stable, meaning
small perturbations away from the steady-state are au-
tomatically corrected.

Since genetic circuits, both natural and engineered,
rely upon transfer of information through small num-
bers of molecules, significant fluctuation is simply one of
the inherent operating conditions [2], resulting in noise
that may give rise to behavior that is very different from
the behavior predicted by deterministic models. Conse-
quently, for cell-scale modeling we propose to modify the
deterministic notion of stability by calculating the effec-
tive eigenvalues λ′i, which include the averaged influence
of the intrinsic noise,

λ′i = λi + λcorr. (1)

Here λcorr ∝ V −1
cell is inversely proportional to the cell vol-

ume Vcell. For notational convenience in the following,
we introduce a parameter ω that is related to the cell vol-
ume by: ω−2 = Vcell. Sometimes ω−2 is called the ‘sys-
tem size’, expressing as it does the relationship between
reactant concentration and molecule numbers [3, 4].

A. Stochastic stability equation

To calculate the stability of the macroscopic model
dx
dt = f(x) to small perturbations, the system is linearized
about the equilibrium point: x = xs + xp,

d

dt
xp = J(0) · xp. (2)

(Here, and henceforth, we adopt the convention of writ-
ing all matrix variables in bold upper-case, and all vec-
tors in bold lower-case.) The eigenvalues of the Jacobian
J(0) = ∂f

∂x

∣∣
x=xs

provide the decay rate of the exponen-
tial eigenmodes; if all the eigenvalues have negative real
part, we say the system is locally asymptotically stable.
We shall restrict ourselves to this notion of stability, al-
though it does ignore algebraically growing modes which
may be important in certain instances [5].

To accommodate fluctuations on top of the small per-
turbation xp, we set x = xs + xp + ωα(t). The Jacobian

J ≡ ∂f
∂x

∣∣∣∣
x=xs+ωα

,

will then be a (generally) nonlinear function of the fluc-
tuations about the steady-state α(t). (As a technical
aside, we note that we are justified in replacing x by
xs + xp + ωα(t) in both the right- and left-hand side of
the deterministic model dx

dt = f(x) since the fluctuations
α(t) have non-zero correlation time (as we show below)
and zero mean, allowing us first to conclude that the
time-derivative of α(t) exists and further that the aver-
age of this derivative must vanish: 〈dα

dt 〉 = d〈α〉
dt = 0). In

the limit ω → 0, we can further linearize J with respect
to ω,

J ≈ J|ω→0 + ω
∂J
∂ω

∣∣∣∣
ω→0

≡ J(0) + ωJ(1) (t) .

The stability equation is then given by,

d

dt
xp = [J(0) + ωJ(1)(t)] · xp. (3)

This is a linear stochastic differential equation with ran-
dom coefficient matrix J(1)(t) composed of a linear com-
bination of the steady-state fluctuations α(t) which have
non-zero correlation time (see Eq. 12). We therefore need
not appeal to any specialized calculi (e.g. Itô’s calcu-
lus) for interpretation since the non-vanishing correlation
time of the fluctuations ensures that xp is a differentiable
process and the equation falls under the purview of ordi-
nary calculus [6].

Our present interest is in the mean stability of the equi-
librium point. Taking the ensemble average of Eq. 3,

d

dt
〈xp〉 = J(0) · 〈xp〉+ ω

〈
J(1) (t) · xp

〉
.
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The right-most term is the cross-correlation between the
process xp and the coefficient matrix J(1)(t). Since the
correlation time of J(1)(t) is not small compared with the
other time scales in the problem, it cannot be replaced
by white noise, and an approximation scheme must be
developed to find a closed evolution equation for 〈xp〉.

B. Bourret’s mode-coupling approximation

By assumption, the number of molecules is large so the
parameter ω is small, although not so small that intrinsic
fluctuations can be ignored. To leading-order in ω, the
trajectory xp (t) is a random function of time since it is
described by a differential equation with random coeffi-
cients. Derivation of the entire probability distribution of
xp (t) is usually impossible, and we must resort to meth-
ods of approximation. We shall adopt the closure scheme
of Bourret [7–9] to arrive at a deterministic equation for
the evolution of the averaged process 〈xp (t)〉 in terms of
only the first and second moments of the fluctuations. In
that approximation, provided J(0) � ωJ(1), the dynam-
ics of 〈xp〉 are governed by the convolution equation,

d

dt
〈xp (t)〉 = J0 〈xp (t)〉 (4)

+ω2

t∫
0

Jc (t− τ) 〈xp (τ)〉 dτ ,

where Jc (t− τ) =
〈
J(1) (t) eJ

(0)(t−τ)J(1) (τ)
〉

is the time

autocorrelation matrix of the fluctuations and eJ0(t−τ)

is the matrix exponential of J(0). The equation can be
solved formally by Laplace transform,

〈x̂p (s)〉 =
[
sI− J(0) − ω2Ĵc (s)

]−1

〈xp (0)〉 ,

where now Ĵc (s) =
t∫
0

Jc (t) e−stdt. A necessary and suf-

ficient condition for asymptotic stability of the averaged
perturbation modes 〈xp (t)〉 is that the roots λ′ of the
resolvent,

det
[
λ′I− J0 − ω2Ĵc (λ′)

]
= 0, (5)

all have negative real parts (Re(λ′) < 0) [10]. Some
insight into the behavior of the system can be gained
by considering a perturbation expansion of the effective
eigenvalues λ′ in terms of the small parameter ω. We
further diagonalize J(0), diag[λi] = P−1 · J(0) · P, and
provided the eigenvalues are distinct, we can explicitly
write λ′i in terms of the unperturbed eigenvalues λi to
O(ω4) as,

λ′i = λi + ω2 [ P−1 · Ĵc (λi) ·P ]ii, (6)

where [ · ]ii denotes the ith diagonal entry of the matrix.

Notice the matrix product Jc(t − τ) contains lin-
ear combinations of the correlation of the fluctuations
〈αi(t)αj(τ)〉, and as such we must derive an expression
for those moments.

C. Calculating the statistics of the steady-state
fluctuations

The statistics of the fluctuations α are fully deter-
mined by the solution of the chemical Master equation
(defined below) that comes from treating each reaction
event probabilistically. In that probabilistic formulation,
our state at any time t is represented by the vector of
molecule numbers n ∈ Nd; with ni representing the num-
ber of molecules of a given species. Each reaction causes
a transition from the initial state n to some new state n′

reflecting the addition or removal of molecules by that
reaction. The probability that the transition n → n′ oc-
curs is the product of the probability of being in state n
at time t, P (n, t), and the transition probability of mov-
ing from n → n′, denoted by Wn→n′ . We thus write the
probability conservation as a balance of flux into and out
of the state n, which yields a discrete differential equation
for P (n, t),

∂P (n, t)
∂t

=
∑
n′

Wn′→nP (n′, t)−Wn→n′P (n, t). (7)

The evolution equation for P (n, t) is called the Master
equation [11]. It is rare that the Master equation can be
solved exactly for P (n, t), and approximation schemes
are required. One such scheme, the linear noise approx-
imation [12], is versatile and will be described briefly
(see also [3] and [13]). The approximation begins with
the assumption that the molecule concentrations can be
meaningfully separated into a component that evolves
deterministically, which we shall denote x(t), and fluctu-
ations α(t) that account for the deviation of the stochas-
tic model from the deterministic model. We introduce
a scaling parameter ω, where ω−2 = Vcell is the volume
of the cell and is an extensive measure of the number
of molecules. We then make the ansatz that the fluctua-
tions scale as the square-root of the number of molecules:
ω2 ni = xi + ω αi [12, 14]. In that way, a perturbation
expansion as the number of molecules gets large (ω → 0,
with concentration held fixed), returns to zero’th order
the macroscopic reaction rate equations,

dx
dt

= f(x). (8)

The first-order equation, that comes at O(ω), charac-
terizes the probability distribution for the fluctuations
Π(α, t) centered on the macroscopic trajectory x(t), and
has the form of a linear Fokker-Planck equation,

∂Π
∂t

= −
∑
i,j

Γij∂i(αjΠ) +
1
2

∑
i,j

Dij∂ijΠ. (9)
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where ∂i denotes ∂/∂αi and

Γij(t) =
∂fi

∂xj
D = S · diag[ν] · ST , (10)

(see main text). The matrices Γ and D are independent
of α, which appears only linearly in the drift term. As
a consequence, the distribution Π(α, t) will be Gaussian
for all time. In particular, at equilibrium the fluctuations
are distributed with density,

Πs (α) =
[
(2π)d detΞ

] 1
2

exp
[
−1

2
αT ·Ξ−1 ·α

]
,

and variance Ξ = 〈α ·αT 〉 determined by,

Γ ·Ξ + Ξ · ΓT + D = 0. (11)

Furthermore, the steady-state time correlation function
is, 〈

α (t) αT (t− τ)
〉

= exp [Γτ ] ·Ξ. (12)

Around the steady-state, the process is stationary, which
means the correlation function depends upon time dif-
ference only. Also note that the characteristic corre-
lation time τc = ||Γ||−1 is related to the Jacobian Γ
of the deterministic equations, and therefore cannot be
divorced from the deterministic relaxation time. As a
consequence, representing the fluctuations α(t) as white
noise (τc → 0) is not justified.

The great advantage of the linear noise approximation
is that the autocorrelation function of the steady-state
fluctuations can be calculated directly from the macro-
scopic reaction rates in an algorithmic fashion [3]. Fur-
thermore, since Γ and D are derived from the known
propensity and stoichiometry of the reactions, the sta-
tistics of α are fully determined and are not tunable by
some ad hoc prescription.

II. MEAN FIRST PASSAGE TIME

Bistability is a property exhibited by deterministic sys-
tems. In a stochastic context, bistability is sometimes
assigned to an equilibrium probability distribution with
two maxima, irrespective of their separation. A more
practical criterion for bistability is that the two states
are long-lived and that the mean escape time from one
state to the other is longer than the natural timescales in
the problem. For the single-variable autoactivator model,
we are able to compute the escape time by an explicit
(though approximate) expression (see [15] or p. 139
of [16] for details). Under fairly unrestrictive assump-
tions [17], the Master equation may be approximated by
the nonlinear Fokker-Planck equation,

∂P (a, t)
∂t

= − ∂

∂a
Γ (a)P (a, t) +

1
2
∂2

∂a2
D (a)P (a, t) ,

where the functions Γ and D are the nonlinear analogues
of the coefficient matrices Γ and D generated by the lin-
ear noise approximation shown in the previous section.
For our autoactivator example, the coefficients are given
by,

Γ(a) = γ · g(a)− δ · a D(a) = γ · b · g(a) + δ · a.

The nonlinear Fokker-Planck equation has no general so-
lution for systems of dimension greater than 1, and even
the stationary solution is often impossible to calculate ex-
actly for such systems [18]. In the reduced autoactivator
model, we are fortunate to have a system with one inde-
pendent variable, so we can write the stationary solution
of the Fokker-Planck equation explicitly as,

P s(a) =
N
D(a)

exp

2

a∫
0

Γ (a′)
D (a′)

da′

 ,
where N is the constant of normalization (see p. 124
of [16]). Furthermore, we can explicitly write the first
passage time τ from the HIGH state to the LOW state
or vice-versa.

τHI→LO = 2

a∗HI∫
amid

1
ψ (x)

∞∫
x

ψ (y)
D (y)

dydx

τLO→HI = 2

amid∫
a?

LO

1
ψ (x)

x∫
0

ψ (y)
D (y)

dydx,

where amid is the unstable equilibrium point separating
the HIGH and LOW states a?

HI and a?
LO, respectively.

The function ψ(x) is given by,

ψ(x) = exp

2

x∫
0

Γ (x′)
D (x′)

dx′

 ,
(see p. 139 of [16] for additional details).

In the main text, we discuss min[τLO→HI , τHI→LO]
along the stability curves predicted by the effective eigen-
values. For ∆b = 0.1, min[τLO→HI , τHI→LO] =8 ± 4,
where time has been scaled to protein lifetime (δ−1).
For ∆b = 0.2 and ∆b = 0.3, min[τLO→HI , τHI→LO] =
5.6± 1.4 and 5.9± 0.3, respectively.

III. DETAILS OF GENETIC CIRCUIT
EXAMPLES

A. The autoactivator

We describe the transcription of the activator mRNA,
ma and the translation of activator protein A as two dif-
ferential equations using the activation function g to de-
scribe the time-averaged state of the promoter,

dma

dt
= γm · g(A)− δm ma,

dA

dt
= γp ma − δp A. (13)
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Here γm is the transcription rate, γp is the translation
rate, δm and δp are the rates of mRNA degradation and
protein degradation, respectively. We make the assump-
tion that the mRNA turnover is much faster than the
timescale of protein degradation (i.e. δm � δp). In that
way, we justify setting the mRNA concentration to its
equilibrium level,

m?(A) =
γm

δm
g(A), (14)

reducing the model to a single equation,

dA

dt
=
γm · γp

δm
· g(A)− δp A, (15)

at the expense of lumping transcription and translation
together. Re-writing the constants γ = γm·γp

δm
and δp = δ,

we are left with the evolution equation as written in the
main text,

dA

dt
= γ · g(A)− δ ·A, (16)

where γ is the fully activated rate of protein synthesis
and δ is the rate of protein degradation.

1. Transcriptional activation

The lumping together of transcription and translation
comes at the expense of obscuring translational ampli-
fication of the mRNA. The translational burst size is
approximately equal to the averaged number of protein
molecules synthesized during the lifetime of the mRNA,
b = γp

δm
[19, 20], so we see the production term in the

macroscopic equation is actually (b× transcription rate),

dA

dt
= b× γm · g(A)− δ ·A. (17)

In the deterministic model, the distinction between re-
action rate and reaction stoichiometry is immaterial, but
that is no longer true when we calculate the intrinsic fluc-
tuations. Writing the production and degradation stoi-
chiometry explicitly as in the main text,

bursty synthesis: A
ν1−→ A+ b; ν1 = γ

b · g (A),
linear degradation: A ν2−→ A− 1; ν2 = δ ·A,

(18)

leading to the propensity vector ν = [γ
b · g(A), δ ·A] and

stoichiometry matrix S = [b,−1]. We can easily calculate
the coefficient matrices Γ and D,

Γ = [γ · g′(A)− δ] D = [b · γ · g(A) + δ ·A]. (19)

It is a simple task to then determine the steady-state
correlations of the fluctuations,

Ξ = −1
2
D
Γ

= −1
2

[b · γ · g(A?) + δ ·A?]
[γ · g′(A?)− δ]

, (20)

which is positive since the deterministic eigenvalue
λ = [γ g′(A?)− δ] < 0 in the stable regime where the
analysis is carried out. We write the fractional devia-
tion η of the steady-state fluctuations in A as,

η =

√
〈A2〉
A?

=

√
(b+ 1)

2 [1−A0g′ (A?)]

√
1

A0 · Vcell · g (A?)
,

where A? is the steady-state activator concentration and
A0 = γ

δ is the fully-activated protein concentration and
ω−2 = Vcell is the cell volume. Provided the HIGH and
LOW equilibrium points are well-separated (g′ (A?) ≈ 0),
we can write,

ηLO =

√
(b+ 1)

2

√
f

A0 · Vcell
= ηHI

√
f, (21)

where f is the fold activation. Not surprisingly, the rela-
tive fluctuations around the LOW state are large since in
that state, the molecule numbers are small. More impor-
tantly for the present discussion, we see that the mag-
nitude of the relative fluctuations depends directly upon
the burstiness b. To determine the effect of the bursti-
ness upon the averaged stability, we calculate the stabil-
ity matrices J(0) and J(1) (where time has been scaled
with respect to the protein lifetime: t→ t · δ−1),

J(0) = [A0 g
′
A(a)− 1] ωJ(1) = [A0 g

′′
A(a)]ω α(t),

from which the Laplace transform of the autocorrelation
function Ĵc(s) is derived,

ω2Ĵc (s) = ω2 [A0g
′′]2

∞∫
0

〈α (t)α (0)〉 e[A0g′−1]te−stdt.

Referring to Eq. 12, the steady-state fluctuations have
exponential time-autocorrelation function so that the in-
tegrand becomes,

ω2Ĵc (s) = −ω2 [A0g
′′]2

(b+ 1)
2

A0g

[A0g′ − 1]
(22)

×
∞∫
0

e[A0g′−1]te[A0g′−1]te−stdt.

Evaluating the integral,

ω2Ĵc (s) = − (b+ 1)
2

ω2

KA

A2
0g [A0g

′′]2

[A0g′ − 1]
KA

A0

1
s− 2 [A0g′ − 1]

.

(23)

From the stability matrices, we are able to calculate the
approximation of the effective eigenvalue λ′ from Eq. 6,

λ′ = [A0g
′ − 1] +

ω2

KA

(b+ 1)
2

KA

A0

A4
0 [g′′]2 g

[A0g′ − 1]2
, (24)
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where we identify ω−2 = Vcell as the volume of the cell.
Collecting the constants into groups, we write the the
effective eigenvalue λ′(A?) as,

λ′ = λ+
1

Vcell
λcorr = λ

{
1−∆b · h

(
A0

KA
, g (A?)

)}
,

(25)

where ∆b = (b+1)
2

1
KA·Vcell

is the discrete change in re-
actant molecule numbers, scaled with respect to the
number of activators required to initiate activation
(KA · Vcell), representing the relative change in protein
numbers incurred by the stochastic reaction events. (In
a sense, KA represents the characteristic concentration of
the activator: for activator concentrations far less than
KA, there is no activation and for concentrations far
above KA, the promoter is fully activated.) The sec-

ond term in Eq. 25, h
(

A0
KA

, g (A?)
)

= KA

A0

A4
0(g′′)2

g

|λ|3 con-
tains the details of the regulatory mechanism [21] and
depends strongly upon the stability of the deterministic
system through λ. It is the interplay between the fluc-
tuations (through ∆b) and the macroscopic stability of
the steady-state (through h) that ultimately decides the
averaged stability of the stochastic system.

2. Accuracy of ESA

To compute the accuracy of the effective stability
approximation as a function of the molecule numbers
for the translational autoactivator model, the corrected
eigenvalue λ′ computed above (Eq. 25) is compared
to the short-time Lyapunov exponent of the ensemble-
averaged perturbation modes computed by stochastic
simulation [22].

For a system slightly perturbed from the steady-state
xs, the short-time Lyapunov exponent 〈λ〉 is defined as,

lim
t→0

ln |〈xp (t)〉 − xs| = const. + 〈λ〉 · t.

A numerical calculation of 〈λ〉 is obtained by taking
the ensemble average (over an ensemble of 105 mem-
bers) of xp(t) determined by stochastic simulation. The
slope of the natural-log difference between the numeri-
cally generated perturbation mode and the steady state,
ln |〈xp(t)〉 − xs|, is fit by linear regression over a time
span corresponding to the protein lifetime (i.e. δ−1 = 30
minutes). To compare the stochastic simulation with
the ESA, we focus upon three points in the parameter
space of the autoactivator (Figure 1a, filled circles) – one
point well inside the bistable regime ( A0

KA
= 2.5, f =

80; red), one near the boundary predicted by the ESA
( A0

KA
= 3.5, f = 80; green), and one well inside the

monostable regime ( A0
KA

= 5, f = 80; blue). Figure 1b
compares the resulting Lyapunov exponent 〈λ〉 (dashed
lines) with the ESA prediction λ′ (solid lines), where the
line colors correspond to the colors of the filled circles

A
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FIG. 1: Accuracy of the effective stability approximation
(ESA) as a function of the number of molecules. (A) Focusing
upon three points in the parameter space of the autoactivator
model (see Figure 2a in the main text), it is possible to com-
pare the ESA with the results of numerical simulation. (B)
The short-time Lyapunov exponent of an ensemble average of
the perturbation modes about the LOW state (dashed lines)
approach those values of λ′ predicted according to Eq. 25
(solid lines) for systems with increasing values of KA · Vcell,
which specifies the order of molecule numbers to turn on/off
the gene. Here, the burstiness of protein synthesis is held
constant at b = 9, and each data point is computed from a
sample of 105 trajectories – colors of the curves correspond to
the filled circles in panel A.

in Figure 1a. Here, the burstiness in protein synthesis
is held constant at b = 9, and the characteristic num-
ber of molecules in the system, KA · Vcell, is increased
from 5 to 50. (In the main text, KA · Vcell = 25 so
that a burstiness of b = 9 gives a discreteness parame-
ter of ∆bA

= (b+1)
2

1
KA·Vcell

= 0.2.) As the number of
molecules in the system is increased, the ESA and the
numerical simulation results converge. The figure shows
the effective stability of the transcriptional autoactivator
model is well-characterized by the ESA for systems with
KA · Vcell & 20.
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3. Translational activation

To model the translational activity, we redefine the
transcription rate to be constant γ

b , where b is the maxi-
mum burst size at full activation, and allow the activator
to control the translation rate through the stoichiome-
tery. We write the synthesis and degradation reactions –
in analogy with Eq. 18 above – as,

A
ν1−→ A+ b · g (A) ; ν1 = γ

b ,

A
ν2−→ A− 1; ν2 = δ ·A,

(26)

where the translational activation affects the stoichiom-
etry through the synthesis step-size b · g(A). Notice that
the deterministic equation dA

dt = S · ν = A0 g(A)−A is
identical to the deterministic equation for the transcrip-
tional autoactivator in the previous section. Nonetheless,
the change in synthesis stoichiometry from b 7→ b · g (A)
has a noticeable effect on the resulting stability. As
above, we calculate the effective eigenvalue,

λ′ = λ

{
1− (b · g (A?) + 1)

2
1

Vcell ·KA
· h

(
A0

KA
, g (A?)

)}
,

where h( · ) is as in Eq. 25. The difference from the
transcriptional case is that the burst-size itself is atten-
uated in the LOW state, and the discreteness parame-
ter approaches the minimal value ∆b → 1/(2Vcell ·KA),
thereby increasing the residence time in the LOW state
as compared with transcriptional activation.

B. Genetic oscillator

The parameters of Vilar et al. [23] correspond to the
reduced model parameters:

γA = 25 nM h−1,KA = 0.5 nM, fA = 10, (27)

γR = 5 nM h−1,KR = 1 nM, f−1
R = 0,

κC = 2× 102 nM−1 h−1, and δA = 1 h−1,

where, for simplicity, we make the approximation that 1
molecule / 1µm3 ≈ 1 nM and set Vcell = 100µm3. Fur-
thermore, the mRNA degradation and translation rates
in the original model give an activator burst size of bA = 5
and a repressor burst size of bR = 10.

1. Details of the stochastic model

The reduced model (Eq. 6 in the main text) is com-
posed of six elementary reactions:

A→ A+ bA ν1 = γA

bA
· g

(
A

KA
, fA

)
A→ A− 1 ν2 = δA ·A

(A,R,C) → (A− 1, R− 1, C + 1) ν3 = κC ·A ·R
R→ R+ bR ν4 = γR

bR
· g

(
A

KR
, fR

)
R→ R− 1 ν5 = δR ·R

(R,C) → (R+ 1, C − 1) ν6 = δA · C

The stoichiometry matrix S and the propensity vector ν
are then written as,

S =

 bA −1 −1 0 0 0
0 0 −1 bR −1 1
0 0 1 0 0 −1

 , (28)

ν =



γA

bA
· g

(
A

KA
, fA

)
δA ·A

κC ·A ·R
γR

bR
· g

(
A

KR
, fR

)
δR ·R
δA · C


.

Identification of dimensionless parameters in the deter-
ministic model comes from considering the rate equa-
tions,

d

dt

 A
R
C

 = S · ν = (29)

 γA · g
(

A
KA

, fA

)
− δA ·A− κC ·A ·R

γR · g
(

A
KR

, fR

)
− δR ·R− κC ·A ·R+ δA · C

κC ·A ·R− δA · C

 .

In what follows, it will be convenient to call γ = γR

γA
and

A0 = γA

δA
. Scaling the concentrations with respect to the

characteristic concentration A0 (i.e. A = A′ · A0, etc.)
and time with respect to the activator lifetime, t = t′ ·δA,
the rate equations become,

d

dt′

 A′

R′

C ′

 = (30)


g

(
A′ A0

KA
, fA

)
−A′ −

[
κC ·A0

δA

]
·A′ ·R′

γ · g
(
A′ A0

KR
, fR

)
−

[
δR

δA

]
·R′ −

[
κC ·A0

δA

]
·A′ ·R′ + C ′[

κC ·A0
δA

]
·A′ ·R′ − C ′

 .

The two additional dimensionless constants are the scaled
rate of dimerization κ = κC ·A0

δA
and the ratio of the re-

pressor and activator degradation rates ε = δR

δA
. Hence-

forth, the primes denoting the dimensionless quantities
will be dropped.

Since the variance in the fluctuations is found from the
auxiliary matrices Γ and D (see Eq. 10), and Γ is the
Jacobian of the deterministic system, the dimensionless
stochastic parameters are most easily found by consider-
ing D = S · diag [ν] · ST ,
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D =

 bA · γA · gA + δA ·A+ γC ·A · C γC ·A · C −γC ·A · C
γC ·A · C bR · γR · gR + δR ·R+ γC ·A · C + δA · C −γC ·A · C − δA · C
−γC ·A · C −γC ·A · C − δA · C γC ·A · C + δA · C

 ,

where gi ≡ g
(

A
Ki
, fi

)
. As above, we scale the concen-

trations with respect to A0 and divide through by δA.
Evaluating D at the steady-state (A?, R?, C?), where
dA
dt = dR

dt = dC
dt = 0, provides the additional simplifi-

cations derived from the rate equations above, written in
dimensionless form,

gA = A? + κ ·A? ·R?, (31)
γ · gR + C? = ε ·R? + κ ·A? ·R?,

C? = κ ·A? ·R?.

Hence, the matrix D is written in terms of reactant num-
bers as,

D
γ ·A0

=

 2
[

(bA+1)
2

]
gA

γ C? −C?

C? 2
[

(bR+1)
2

]
gR + 2C? −2C?

−C? −2C? 2C?

 .
(32)

Comparing each diagonal element with the characteristic
mean reactant number of that species (NA ∼ KA Vcell,
NR ∼ KR Vcell), and ignoring parameters coming from
the deterministic model (gA, gR, and γ), we have three
additional constants - the discreteness in the activator
number ∆bA

= (bA+1)
2

1
KA·Vcell

, the discreteness in the

repressor number ∆bR
= (bR+1)

2
1

KR·Vcell
and the extent

of dimerization C?

KR·Vcell
. In the main text, we focus upon

the effect of varying the deterministic parameter ε and
the stochastic parameter ∆bA

.

IV. ALGORITHMIC IMPLEMENTATION OF
THE THE EFFECTIVE STABILITY

APPROXIMATION

The corrections to the deterministic eigenvalues are
computed by solving the resolvent equation for the the
effective eigenvalues λ′,

det[λ′ · I− J(0) − 1
Vcell

Ĵc(λ′)], (33)

(Eq. 12 in the main text). In this section, we provide
a step-by-step algorithm to form the matrices J(0) and
Ĵc(λ′) from the deterministic reaction rates. In the fol-
lowing, the deterministic state vector is denoted by x and
α denotes the fluctuations in each of the components of
x (see Section I-C above). The first three steps of the al-
gorithm come from the paper by Elf and Ehrenberg [3].

1. Write the various reactions in terms of their propen-
sity and stoichiometry. The deterministic reaction
rates are defined by the product S · ν (see Eqs. 18
and 28 above).

2. From S and ν, construct the matrices Γ and D,

Γij(x) =
∂[S · ν]i
∂xj

D(x) = S · diag[ν] · ST . (34)

3. Compute the steady-state covariance in the fluc-
tuations α by solving the fluctuation-dissipation
relation for each of the entries in the symmetric
covariance matrix Ξ (where Ξij = Ξji = 〈αi αj〉),

Γ(xs) ·Ξ + Ξ · ΓT (xs) + D(xs) = 0. (35)

The steady-states xs are calculated from the de-
terministic reaction rates by solving the algebraic
equations ([S · ν]x=xs

) = 0.
Evaluated at the steady-state, the fluctuation-
dissipation relation is simply a 1

2d(d+ 1) system of
linear equations that determine the symmetric en-
tries of Ξ (where d is the dimension of the system).
For more details regarding the general solution of
the fluctuation-dissipation relation, see [24].

4. Compute the matrices J(0) and J(1)(t),

J(0) = Γ(xs) J(1)(t) =
∂Γ(xs + ω α(t))

∂ω
|ω=0. (36)

5. Calculate the matrix Jc(t),

Jc(t) = 〈J(1)(t) · exp[J(0) t] · J(1)(0)〉, (37)

where exp[J(0)t] is the matrix exponential of
J(0). The matrix Jc(t) will be composed of lin-
ear combinations of the autocorrelation functions
〈αi(t) αj(0)〉. Replace each of these by the (i, j)th

element of the matrix exp[J(0) t] ·Ξ,

〈αi(t) αj(0)〉 = [ exp[J(0) t] ·Ξ ]ij , (38)

(see Eq. 12 above).

6. The correction matrix Jc(t) is composed of expo-
nential terms of the form eat, facilitating the com-
putation of the Laplace transform Ĵc(λ′). Simply
replace each term eat with (λ′ − a)−1,

Ĵc(λ′) = Jc(t)|eat→(λ′−a)−1 . (39)

7. Solve the resolvent equation for λ′,

det[λ′ · I− J(0) − 1
Vcell

Ĵc(λ′)]. (40)

The algorithm described above is easily implemented
in symbolic mathematics packages. A version coded in
Mathematica is available from the authors upon request.
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